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Abstract

Productive	and	extreme-scale	graph	computations	enabled	by	GraphBLAS
Ariful Azad	and	Aydın	Buluç,	Computational	Research	Division,	Lawrence	Berkeley	National	Laboratory	

ü GraphBLAS-based	approach	separates	computation-
al	kernels	from	high-level	algorithms	&	applications.

ü Boosts	the	productivity	of	applications	significantly.	
ü Resulted	in	highly-scalable	algorithms	for	matching,	

ordering,	connected	components,	maximal	
independent	set	and	graph	clustering.

Future	directions	and	impacts:
❄ Short	term:	A	GraphBLAS-compliant	library	with	
optimized	in-node	performance.	Explore	new	domains.
❄Medium	term:	Communication-avoiding	algorithms	
for	GraphBLAS primitives	targeting	future	exascale
systems.	Enable	new	high-level	algorithms.		
❄ Long	term:	Provide	easy-to-use	graph	libraries	for	
biology,	scientific	computing	&	machine	learning.	

Areas	needing	high-performance	graph	computation:
ü Machine	Learning
ü Computational	Biology
ü Scientific	computing
ü Quantum	computing	

We	develop	several	classes	of	graph	algorithms	
using	linear-algebraic	(GraphBLAS)	primitives.	In-
house	combinatorial	BLAS	library	enabled	rapid	
development	of	bipartite	graph	matching,	reverse	
Cuthill-McKee	ordering,	triangle	counting,	
connected	components	and	Markov	clustering	
algorithms	that	scale	to	thousands	of	cores	on	
modern	supercomputers.	These	algorithms	in	turn	
empower	key	science	applications		including	
protein	family	detection	and	sparse	linear	solvers.
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Fig	1.	Algorithmic	chain	to	be	developed
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(1) Distributed-memory	graph	matching
ü A	suite	of	parallel	algorithms	developed.	Sparse	

matrix-sparse	vector	multiply,	inverted	index	used.
ü Scales	to	several	thousands	of	cores	
ü Impact: Remove	the	sequential-ordering	

bottleneck	from	SuperLU and	STRUMPACK	

❄Why	graphs?	Graph	computation	drives	many	
applications	in	biology	and	scientific	computing.
❄Why	GraphBLAS?	The	diversity	and	rapid	
evolution	of	applications,	architectures	&	algorithms	
motivates	us	to	isolate	a	small	number	of	graph	
kernels	entrusted	with	delivering	high-performance.	
❄ Expected	impacts:	(a)	better	understanding	of	
data	and	computational	patterns,	(b)	rapid	
development	of	high-performance	applications.	
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We	develop	graph	and	machine	learning	algorithms	
using	linear-algebraic	primitives.	Two	thrusts:
1.	Develop communication-avoiding	and	work-
efficient	primitives	(Aydin’s	poster)
2.	Design	algorithms	using	optimized	primitives

Results Conclusions	and	Future	Work

(2)		Distributed-memory	Markov	clustering	(HipMCL)
ü Sparse	matrix-matrix	multiply,	connected	

components,	and	k-select	algorithms	used.	
ü Scalable	up	to	136K	cores	on	NERSC/Cori
ü Impact: Reduced	a	45-day	clustering	job	to	just	an	

hour.		Clustered	massive	networks	with	70B	edges.	
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Fig.	Performance	of	HipMCL w.r.t. a	previous	approach

Fig.	(a)	Classes	of	algorithms,	(b) performance	of	MCM

Areas	in	which	we	can	help

Areas	in	which	we	need	help

References

Areas	needing	high-performance	graph	computation:
ü Biology	&	other	domains	to	understand	applications
ü Programming		language	and	libraries	(UPC,	GASNet)
ü Efficient	FILE	I/O	(HDF5)
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